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1 Introduction

There have been several attempts recently to reconcile, or at least to understand the relation-

ship between, traditional probabilistic models of information retrieval and the newer language

models. Since both treat the retrieval problem probabilistically, it might be expected that

they can be formulated in comparable terms. However, this has proved diÆcult. One question

concerns the role of relevance, which takes a central position in some traditional models (such

as Robertson and Sparck Jones [1976], referred to as RSJ), but does not appear explicitly in

at least the early language models (e.g. Ponte and Croft [1998].

The present author and others [Sparck Jones et al. 2002] have recently claimed that the

early language models assume that there is only one relevant document per query. This claim

is based on the observation that language models ask the question of each document: What

is the probability that this document, or rather the model which generated this document,

also generated the query? Since each document is taken to have its own language model, if it

turns out that a particular document is relevant (that is, its model did indeed generate the

query), it would seem that no other model could have done.

La�erty and Zhai [2002], on the other hand, in a recent paper, develop a basic probabilistic

model from which they derive both the RSJ model and the simple language model. They

claim in conclusion that (a) RSJ and the simple language model are equivalent; and (b) that

the language model requires no such assumption as that there is only one relevant document

per query.

The present paper discusses an issue underlying all probabilistic models, that of the event

space assumed, and draws in part from a pair of old papers [Robertson et al. 1982; Robertson

et al. 1983]. I discuss possible views of the event space in case of documents, queries and

relevance judgements, and come to some di�erent conclusions about the relationship between

RSJ and the simple language models. However, in order to illustrate the event space issues,

the paper �rst introduces a rather di�erent example from the IR one, with di�erent structural

characteristics.
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2 Random variables, conditional probabilities and event spaces

Suppose we have two random variables, X and Y , with some assumed relation between them.

We can imagine (though this is not necessary) that there is a causal relation X ! Y . Then

we might consider a model which models the following quantities:

Model A: P (X); P (Y jX)

Can we now, without asking any further questions, apply such equations as:

P (Y ) =
X

X

P (X)P (Y jX) ? (1)

Equation 1 is one of the basic relationships in probability theory. These relationships imply

that Model A provides a full description of the event space involving these two random

variables: that if we have Model A, then we can infer any other quantity involving just these

variables.

However, the following example will show that we cannot blindly apply equation 1 to

a situation in which we have all the information for Model A. There is, of course, a simple

explanation for this apparent contradiction of the laws of probability; however, the explanation

needs to be investigated.

Example: we have stars S, and planets T . Stars either have (X = 1) or do not have

(X = 0) magnetic �elds. Planets either have (Y = 1) or do not have (Y = 0) magnetic �elds.

We have a (complete) universe consisting of 2 stars and 3 planets. Star s1 has x1 = 1; it has

two planets t11 and t12 with y11 = 1 and y12 = 0. Star s2 has x2 = 0; it has one planet t21
with y21 = 0. In this universe, the following probabilities may be calculated (not estimated,

since the universe is complete, but calculated exactly):

P (X = 1) = 1

2

P (Y = 1jX = 1) = 1

2

P (Y = 1jX = 0) = 0

From these we would infer using equation 1 that P (Y = 1) = 1

4
. But we have three planets,

one of which has a magnetic �eld, so actually we have P (Y = 1) = 1

3
.

We could construct a similar example using parents and children and some genetically-

determined property (such as eye colour). We could have a model that speci�ed (for a

population) the probability of each combination of the relevant genes (X); also the probability

of each eye colour in a child conditional on the parents' genes (Y jX). But if we wanted to

infer the probability of the parents' gene combination on the basis of the observed eye colour

of a child (XjY ), we would run into the same problem.

2.1 Brief speci�cation of the problem

What is the problem here? In short, it is the event space. The laws of probability are written

in terms of a single event space with a single probability measure de�ned on it; for historical

reasons (which I believe to be unfortunate), the standard notation P (:j:) does not provide for

the denotation of the event space. If we denote a probability for a particular event space E

as PE(:j:), then I should rewrite the data I have for the example as:

PS(X = 1) = 1

2

PT (Y = 1jX = 1) = 1

2

PT (Y = 1jX = 0) = 0,
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referring to the event spaces of stars and planets. It is immediately obvious that we cannot

apply equation 1 to this data, because the probabilities are de�ned in di�erent event spaces.

So the answer to my question above is: We emphatically cannot apply the equation without

asking any questions.

But this situation deserves much more detailed analysis. The combination of event spaces

I have exempli�ed, involving stars and planets, has a slightly complex but not particularly

unusual structure (that of every many-to-one relation in every relational database in the

world). It is worth asking questions about what we can say about such combinations.

2.2 Overview of event spaces

The traditional view is that the event space is the set of all possible outcomes of an experiment,

that the probability measure is a measure satisfying certain properties on this event space,

that a random variable is a deterministic function of the outcome of an experiment. One

could discuss this at length, but it will do for the present discussion. If we want to de�ne a

probability PE (X), we need to assume that we do indeed have a well-de�ned event space E ,

probability measure P , and random variable X de�ned on E . For PE (Y jX), we need both Y

and X to be de�ned on E ; the values of X are used to induce a partition on E .

I will also observe that in a �nite event space, the usual simplest probability measure

assigns equal probability to each elementary event. However, there are many circumstances

in which that is simply inappropriate, to the extent that one would not even consider it a

candidate. For example: suppose the experiment consists in tossing two coins, with outcomes

HH,HT,TT. Our knowledge of the structure of this event space is such that we would (prob-

ably without thinking) reject the simple probability measure (1/3,1/3,1/3) and instead use

(1/4,1/2,1/4). Our understanding of the structure of this event space is enough to convince

is that the simple one is simply bad.

3 Detailed analysis of the example

The full event space of the stars and planets example is a set of stars, a set of planets, and a

one-to-many relation between them. We have this knowledge of the structure, and we need to

work out the implications of this knowledge for any probabilistic statements about or models

for the event space. I will refer to this full event space as ST . To help focus the discussion, I

will imagine that one question I might want to ask is the following:

What is the probability that a star has a magnetic �eld, given that I know that

it has two planets with magnetic �elds?

This is a perfectly reasonable question to ask, though it may need some re�ning. But �rst I

will explore some possible ways of looking at the event space ST . We can consider several

simpler event spaces. The �rst is just S. This is easy: it stands on its own (does not need T to

de�ne it), has X de�ned on it, and has no internal structure. It makes perfect sense to de�ne

a uniform probability measure on it; this yields the above value for P (X = 1) = PS(X = 1)

in the speci�ed universe.

The second is T . This is also moderately straightforward, if we look at Y alone; however,

it does have some internal structure (planets are siblings of each other or not), which treating

it as a straightforward uniform-probability event space will simply ignore. More on this later.
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But there is another slight complication: I want to consider X as a condition on this space.

Is this valid? Well, with a very slight extension, yes: we can ask of any planet, as well as

\Do you have a magnetic �eld?", \Does your star have a magnetic �eld?". This question

is clear and unambiguous, so it is perfectly reasonable to assert that X is de�ned on T as

well as on S. However, in order to be strictly accurate, I should treat this as involving an

extension of both the event space and the variable; we might refer to these as T + and X 0.

In T +, we associate with each planet not only its own properties but those of the star to

which it belongs, and X 0 is the property of the planet of belonging to a star with or without

a magnetic �eld. Then I should rephrase my data about the speci�ed universe as:

PS(X = 1) = 1

2

PT +(Y = 1jX 0 = 1) = 1

2

PT +(Y = 1jX 0 = 0) = 0

{ but it also becomes clear that I need more data to specify the probabilistic properties of

this event space more fully. For example, I may need PT +(X
0), which is not deducible from

the above and which is di�erent from PS(X). This would then allow me to use equation 1.

Note that I cannot do the same trick the other way around: I cannot simply ask a star

\Does your planet have a magnetic �eld?", because the question is ill-de�ned. I could de�ne

an S+ in a di�erent way, e.g. by de�ning a new random variable Y 0 as the proportion of

the star's planets that have magnetic �elds, and construct a probabilistic model with this

combination of event space and random variables. As before, a simple uniform probability

measure (on stars) is quite appropriate.

I now have �ve event spaces: ST , S, T , S+, T +. There are di�erences between them,

some minor, some signi�cant. I have simple, straightforward probability measures on each of

the last four of these spaces. I do not, however, have a probability measure of any kind on

ST . Nor is it possible to de�ne one which (a) makes sense, and (b) allows me to express all

probabilistic aspects of the space.

Does this mean that we cannot make probabilistic statements about ST ? Of course not.

Any statement about any of the other event spaces is also about ST . However, none of the

other spaces captures all that we might want about ST . Given that we need event spaces with

probability measures, it follows that we need more than one event space to make probabilistic

sense of ST .

Now we may return to the question with which I started this section. Of the event spaces

I have considered, the one which comes closest to helping us with this question is S+ as

de�ned; but this does not quite do the trick. Answering the question would actually need a

good understanding of the full structured event space ST , and a combination of models which

explicity took this structure into account. It simply does not make sense in T +, because in

this event space, there is no such thing as an individual star. (In fact S+ does not have

individual planets, either.)

4 A small observation

None of the above problems arise if X and Y are initially de�ned on the same event space {

in this case Model A and equation 1 go together perfectly well. I believe this is the situation

most theorists have in mind when they automatically assume equation 1. I also believe this

assumption is dangerous.
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5 Further analysis of T +

I said above that in T + there is no such thing as an individual star. This statement deserves

further analysis.

T + consists of a set of elementary events f(t; s)g where t 2 T is a planet and s 2 S is

a star (together with a uniform probability measure on these events). That is, we take each

planet t and its properties, and its associated star s and its properties, as the single event

f(t; s)g which gives us the values of our random variables. Each such event is distinct as an

event from every other; this is the nature of a simple event space. So in some sense there are

individual stars; the concept that is missing from this space is that of di�erent planets sharing

an individual star. To put it another way: if we take T + as our complete probabilistic model,

we are in e�ect assuming that every star has just one planet.

At least, it is clear that the model T + is consistent with such an assumption. Furthermore,

I cannot see any way of generating this model under a weaker assumption.

6 Queries and documents: the cross product structure

The structure of the ST example is not uncommon, but it is not the same as the query /

document / relevance case. I would like to discuss some aspects of this case.

We start with the set of all queries Q. As with stars, this is the set of all actual queries,

representing information needs, not the set of all values of some random variable. We may

de�ne one or more random variables on this set, including (following La�erty) the text of the

query. Similarly we have a set D of documents. Ignoring relevance for the moment, queries

and documents have at �rst glance no logical relationship. What this means is that we can

pair any document with any query. The logical structure of this space (QD) is a cross product

of the two individual spaces Q and D.

In this case, there is a simple and fairly obvious probability measure on the space, namely

one that is uniform over pairs (q; d) 2 Q � D. I shall refer to the probabilistic event space

de�ned by this measure over this set of events as QD0; the cross product on its own, without

a probability measure, I shall call QD on its own.

It might be assumed that this uniform probability measure on pairs (QD0) is in some

sense equivalent to treating the two separate spaces Q and D uniformly. However, this is

not the case (or at least, such equivalence has severe limitations). A consequence of choosing

pairs as the basis for the probability measure in QD0 is that it loses part of the structure of

the full space QD, in the same way that T + loses part of the structure of ST . Consider the

following structural aspects:

� QD is `striped' { any property that a particular query has is shared across all pairs

involving this same query with any document (and vice-versa); QD0 has no such striped

character.

� in QD every pair has one set of q-siblings (all the pairs sharing the same query-event)

and another set of d-siblings; there are no siblings in QD0.

� the question `what can I say probabilistically about a query, if I know something about

two of the pairs to which it belongs?' has meaning in QD, but none in QD0.

� the concept of an individual query or document is apparently meaningless in QD0 (but

see the following section).
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6.1 Individuality of documents and queries

If we take QD0 as our complete probabilistic model of the query-document situation, we

are assuming a uniform space of unit events which are query-document pairs. Every such

event is distinct, and there is no concept that two such events may share the same individual

query event (say). This is equivalent to assuming that every document (individual document

event) has exactly one query and every query has exactly one document. Note that this is

independent of the relevance variable, which we have not yet introduced.

6.2 Random variables

We may de�ne as random variables in the space of query-document pairs the text of the query

and the text of the document. However, to be strictly accurate, we must acknowledge that

(for example) the random variable which is the text of the query, de�ned on the event space

of all queries, is di�erent from the random variable which is the text of the query, de�ned

on the event space of all query-document pairs. Query-siblings in QD share the same query

event and therefore necessarily the same query-text. No such relationship can exist in QD0

{ two query-document pairs may share the same query text but only accidentally. Thus by

reinterpreting the query-text variable as a random variable in QD0, we are at the same time

changing its nature signi�cantly.

A binary relevance variable may be de�ned as a random variable on the space of individ-

ual query-document pairs (but not, clearly, on individual documents or queries). Thus this

variable naturally resides in QD0. However, since neither the text of the query nor the text

of the document naturally reside there, we have to be careful about models involving all three

variables.

6.3 Samples

If we were to sample query-document pairs, the resulting sample would have the characteristics

of QD0. On the other hand, if we were to sample queries and documents separately, and then

take all the resulting pairs, we would have a space with all the above characteristics which

QD0 lacks (stripes, siblings, etc.). (This is close to what we actually do in experiments { for

the very good reason that it preserves aspects of the structure of the full space QD in which

we are interested.) This is a perfectly good form of sampling, but one which is simply not

described by the probabilistic event space QD0.

We might consider constructing a composite space for a probabilistic model from a uni-

form probability distribution on queries and a separate uniform probability distribution on

documents. However, this would not constitute a single probabilistic event space in the usual

sense. Can we de�ne a single probabilistic event space which preserves any of the above

aspects? As with the ST example, it is not possible to �nd one which preserves everything,

but di�erent spaces preserve di�erent things.

7 Possible event spaces for IR

7.1 The event space of the RSJ model

The RSJ model [Robertson and Sparck Jones 1976] is formulated for a single query. All

probabilities are about documents in relation to this single query. We can thus see the event
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space as the space of documents (with a uniform prior distribution); but this event space

is reinterpreted for each query. In terms of the discussion above, we have q-siblings as an

implicit part of the model; however, the model cannot see d-siblings. The model thus assumes

that there is just one query for every document but not vice versa. In e�ect, the document

collection is reinvented for every query. This means that we can learn about the speci�c query

(relevance feedback in the usual sense), but not about the speci�c document over successive

queries.

7.2 The event space of the simple language model

This is a little more diÆcult to see. Since the language model expresses a probability of

a query given a document, it is tempting to see it as the dual of the RSJ model. This

would mean that the event space was the space of queries, considered only in relation to this

document. This would be consistent with the discussion in Robertson, Maron, and Cooper

[1982], and would make the language model equivalent to the original probabilistic IR model

of Maron and Kuhns [1960].

However, it is clear that this is not the interpretation placed on the language model by

its proponents. The language model is commonly used to derive a score by which documents

are ranked for a given query, in the usual fashion. But this requires that the scores for

di�erent documents, but for the same query, are directly comparable. Under the above

interpretation of the event space, the scores cannot be comparable, since they come from

probability distributions in di�erent event spaces.

It is unclear to me what should be taken as the event space for the simple language model.

Possible solutions would be QD0 or that proposed by La�erty and Zhai. Either of these would

imply that the simple language model is not capable of supporting per-query-event relevance

feedback (that is, relevance feedback in the usual sense), though it would support relevance

feedback across all queries sharing the same text.

7.3 The La�erty/Zhai model

The model proposed by La�erty and Zhai [2002] is even simpler than QD0. They consider

only the cross-product of values of Q and D (i.e. the texts as above), not of individual events,

with a uniform probability distribution on the pairs in this cross-product. This has several

implications.

One is that replicated queries (multiple query-events with the same text) are regarded as

having the same probability, irrespective of their frequency of replication. This probably is

of no importance, for the same reason that the RSJ approach is reasonable: all comparisons

which the model is intended to allow are between documents for the same query. However, it

would be important for inter-query-event feedback.

A more serious implication is the following. If relevance is to be taken as a random variable

on this event space, it means that we must assume that relevance is determined only by the

values (texts) of Q and D. This means that (we assume) any two people who ask the same

question and see the same document will make the same relevance judgement. Since we know

very well that many queries are highly ambiguous, quite apart from subjective di�erences,

this is a strong assumption.

Despite these quali�cations, in many respects the La�erty/Zhai model seems to be similar

to QD0. The event space refers to no individual events (either query-events or document-
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events). In this space, it is not possible to distinguish between query-document pairs which

share the same query text because they share the same query-event, and those which share the

same query text by accident (because a sampling process has happened to throw up the same

value). The space cannot therefore have any of the structural characteristics of QD discussed

in section 6 above (striping, siblings etc.). Thus it seems to assume implicitly with QD0 that

for every document-event there is exactly one query-event and vice versa. The assumption is

implicit because it is not possible to express either this assumption or its negation in terms

of the event space, but it is required because of the absence of structural characteristics.

The assumption of a one-to-one relationship between document and query events is even

stronger than the assumption attributed to the simple language model earlier, that each query

has only one relevant document.

The version of RSJ which La�erty and Zhai derive from their model is a special case of

RSJ, since the assumption that each query has just one document is not necessary for RSJ.

Therefore the conclusion that RSJ and the simple language model are equivalent is not a

valid general inference from this model.

8 Conclusions

1. Model A does not carry equation 1 as a necessary consequence under all conditions

under which it (Model A) can be de�ned.

2. When a probabilistic model is being constructed, the structure of the event space cannot

be ignored.

3. Sometimes an event space is of suÆcient structural complexity that a single probabilistic

model (based on a single event space with a single probability measure) would be unable

to capture all important statistical knowledge about it.

4. This last is the case with queries, documents and relevance judgements.

5. RSJ is not equivalent to a model based on uniform probabilities over query-document

pairs.
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